
Detecting Network Based Intrusions using Neural Networks

The following paper aims to give an overview of some basic machine learning techniques

that can be used to identify network based intrusions. This will include prepossessing steps

used to format the data correctly and feature analysis. Neural network based models will

then be applied to perform binary classification of network intrusion data into either nor-

mal patterns or attack patterns. The effectiveness of these models will be evaluated and

improvements, including tuning their hyperparameters, will be considered.

Contents

1. Preprocessing and Data Analysis 1

2. Neural Networks 3

2.1. Artificial Neurons 4

2.2. Activation Functions 5

2.3. Learning 6

2.4. Types of Learning 6

3. Neural Networks Applied to Network Data 7

3.1. Architecture and PyTorch Code 7

3.2. Accuracy and Hyperparameter Tuning 11

3.3. Learning Curve 12

3.4. Final Model 14

4. Conclusions 15

1. Preprocessing and Data Analysis

The data source for this paper is the RT-IoT2022 network intrusion detection
dataset, which can be downloaded from the UC Irvine Machine Learning repository
(https://archive.ics.uci.edu/dataset/942/rt-iot2022). This is a previously proprietary dataset
which was released in 2024. The data is gathered from a set of Internet-of-Things (IoT)
devices, including the ThingSpeak-LED, Wipro-Bulb, and MQTT-Temp devices. Simulated



Ben H Detecting Network Based Intrusions using Neural Networks

network attacks were performed against these devices, including brute-force, denial-of-service
and network scanning patterns. The dataset is designed to help researches improve the capacity
of network based intrusion detection systems.

The quality of the input data is a key factor that can determine how well a machine learning
algorithm can learn. The main objectives of data preprocessing are as follows:

• Dealing with missing values in the dataset.

• Appropriately dealing with categorical data.

• Identifying relevant features that can be used in model construction.

The network intrusion detection dataset under evaluation does not have any missing values,
meaning that every row in the dataset has assigned values for all input features. Consequently,
there is no need to address missing values in the dataset, such as employing interpolation tech-
niques to estimate values based on other training examples in the dataset.

Categorical data refers to variables that have specific categories or groups. Within categorical
data, there are two additional subcategories: ordinal and nominal features.

Ordinal features represent a subtype of categorical variables where the values exhibit a meaning-
ful order or ranking, although the distinctions between these values lacks a precise or meaning-
ful definition. Take, for instance, t-shirt sizes, which constitute ordinal data due to the inherent
ordering of sizes (small, medium, large) without a precisely defined difference between them.
Ordinal features are commonly encoded into numerical values while retaining their original or-
dering. Using the example of t-shirt sizes, this encoding might assign values like 1 for small, 2
for medium, and 3 for large, providing a numerical representation that respects the established
order of the data.

In nominal features, values represent distinct categories or groups without any inherent ordering
or ranking. Consider the colour of a t-shirt, which can be categorised into groups such as blue,
black, and green. However, these colour categories lack any inherent order. If we were to apply
the same encoding as used for ordinal data, this would introduce an ordering to the data that
does not exist. For instance, encoding blue as 1, black as 2, and green as 3 would erroneously
imply an ordering; that is, blue is less than black which is less than green. The absence of
a specific ordering in the colour values means that providing this information to a machine
learning algorithm could lead the model to learn non-existent relationships between data points
due to our chosen representation of data values.

To address this challenge, the recommended solution is to employ one-hot encoding. This tech-
nique involves generating new features for every distinct value in the nominal feature column.
Using the example of t-shirt colours, this would result in three new features labelled blue, black,
and green. Each colour is represented by a binary value. For example, the colour blue would be
encoded as (blue=1, black=0, green=0), effectively capturing the presence or absence of each
colour in a binary format.

2



Ben H Detecting Network Based Intrusions using Neural Networks

Our dataset contained a number of features which contain categorical data, for example, proto
and service. These two features correspond to the protocol used to make the connection (for
example, TCP) and the service which was connected to (for example, http). Both features are
nominal features as there is no inherent ordering to the values. To deal with these features we
perform one-hot encoding to obtain new features, one for each unique value observed in these
features.

Furthermore, we scale all numerical features to fall within the range of 0 to 1. This normal-
isation guarantees that no single feature will dominate the learning process and ensures equal
contributions from all features. Without this normalisation, features with larger scales would be
disproportionately emphasised by the model.

Finally, the class labels in this dataset correspond to the type of network attack that is being
performed against the IoT devices. For example, the ARP poisioning classification was encoded
as 1 as this represents a network intrusion attack. However, the MQTT classification, which did
not represent a network attack and was instead a normal pattern, was encoded as 0. The same
encoding was performed across all categories of attack patterns and normal patterns.

Data processing increased the datasets total feature size from 85 to 94 features. All numerical
features were suitably normalised in a range of [0, 1]. We appropriately dealt with categorical
data by suitably encoding the data depending on whether the features were ordinal or nominal.

2. Neural Networks

A neural network (NN) is a computational model inspired by the structure and functioning of the
human brain. NNs are designed to perform tasks related to pattern recognition and information
processing. It consists of interconnected nodes, or artificial neurons, organised into layers. The
three main types of layers in a neural network are the input layer, hidden layers, and the output
layer. Each node in one layer is connected to each node in the next layer. Like synapses in the
biological brain, each connection can transmit signals to other nodes. The signal received at
each node is a real number and the output of each node is computed as a function if its inputs.

In a NN, information is passed through the network by adjusting the weights assigned to con-
nections between neurons. Each connection has a weight that represents the strength of the
connection. During training, the network learns to adjust these weights based on the input data
and desired output, optimising its ability to make accurate predictions or classifications.

Neural networks are widely used in machine learning for tasks such as image and speech recog-
nition, natural language processing, and solving complex problems where traditional algorith-
mic approaches may be less effective. The architecture and complexity of neural networks can
vary, with deep neural networks having multiple hidden layers, giving rise to the term ‘deep
learning.’

3



Ben H Detecting Network Based Intrusions using Neural Networks

FIG. 1: A simplified example of a NN. There is an input layer, which takes in data fed to the algorithm,

and consists of a set of nodes. The input layer nodes are each connected to every node in the hidden

layer by a series of weighted connections. Larger weights imply a stronger connection between the

nodes. The hidden layer nodes are then connected to the output layer nodes. The results in the output

layer can be considered as the output of the neural network. NN can have more than one hidden layer of

nodes, which is known as a deep neural network.

2.1. Artificial Neurons

NNs are composed of artificial neurons which are based on the structure of biological neurons.
Each neuron has inputs and produces a single output. The output of each neuron is calculated
by performing the weighted sum of its inputs (weighted by the weights of the connections to
the neuron). We also add a bias term to this sum, which acts as an offset, allowing the model to
fit better to the data. This sum is then passed through an activation function (which is usually
non-linear) to produce an output.

More formally, we have a set of input values from the previous neurons in the network. Each
one of these connections has a weight value which is used to rank the significance of these
connections. These can be represented as vectors x and w for the input values and weights
respectively.

4



Ben H Detecting Network Based Intrusions using Neural Networks

w =

w1

...
wm

 , x =

x1...
xm


We then define an activation function σ, which is used to compute the output of the neuron, also
called the neuron’s activation. The activation can be computed as:

z = w1x1 + · · ·+ wmxm = wTx+ b,

where b is the bias vector, used to introduce an offset to shift the activation function. The
activation of the neuron is then computed as σ(z).

Neurons are organised into multiple layers, with this becoming particularly prominent in deep
learning, where multiple layers of neurons are constructed. Neurons of one layer are connected
to all neurons in the preceding and following layers. The input layer receives external data as
input to the network. The output of the network is received from the output layer (or final layer).
In between these layers are a set of hidden layers.

2.2. Activation Functions

An activation function is designed to introduce non-linearity to the model. As previously seen,
it operates on the weighted sum of input values and a bias term in each neuron. The activation
function decides whether a neuron should be activated or not, influencing the information flow
through the network. By introducing non-linearity, activation functions enable neural networks
to model complex relationships in data, capture patterns, and learn hierarchical representations.

Some popular activation functions include the sigmoid, hyperbolic tangent (tanh), and rectified
linear unit (ReLU), each with its own characteristics and suitability for different scenarios:

Sigmoid The sigmoid function, also known as the logistic function, is a widely used activation
function in NNs. It transforms input values into a range between 0 and 1, effectively
squashing them to be interpreted as probabilities. The sigmoid function is characterized
by its S-shaped curve, smoothly transitioning from near 0 for large negative inputs to near
1 for large positive inputs. This property makes it particularly useful in binary classifi-
cation problems, where the output can be interpreted as the likelihood of belonging to a
certain class.

Hyperbolic Tangent (tanh) Similar to the sigmoid function, tanh squashes input values, but
it maps them to a range between -1 and 1, offering a symmetric S-shaped curve. This
property allows tanh to mitigate the so called vanishing gradient problem to some extent
compared to the sigmoid function.

5



Ben H Detecting Network Based Intrusions using Neural Networks

ReLU The Rectified Linear Unit (ReLU) replaces all negative input values with zero and leaves
positive values unchanged. This simple thresholding at zero introduces non-linearity to
the model, allowing it to learn and represent complex patterns in the data.

2.3. Learning

A neural network learns through a process called backpropagation, which involves forward and
backward passes through the network. During the forward pass, input data is fed through the
network, and the weighted sum, activation function, and output are computed for each neuron.
The predicted output is then compared to the actual target values, and the difference (error) is
calculated using a loss function.

In order to perform the backward pass, we must define a function which the network should
aim to minimise. For supervised learning, we defined the loss function which measures the
difference between the predicted output and the actual target values for a given set of input
data. It quantifies how well or poorly the model is performing on the task at hand. The goal
of training the network is to minimise the value of the loss; lower values of the loss means the
network is performing its task better as the difference between the network’s predicted output
and the actual values are lower.

In the backward pass, the gradient of the loss with respect to the network’s weights are com-
puted using the chain rule. This gradient represents the direction and magnitude of the steepest
increase in the loss. The weights are then adjusted in the opposite direction of the gradient
to minimise the loss. This process is typically performed using optimisation algorithms like
stochastic gradient descent (SGD) or its variants.

During each iteration (epoch) of training, the weights are updated iteratively to reduce the error.
This continues until the model reaches a state where the error is minimised, and the network has
learned to make accurate predictions on the training data. Regularisation techniques, learning
rate adjustments, and other optimisation strategies may be employed to enhance the training
process and prevent overfitting.

2.4. Types of Learning

Machine learning is commonly categorised into three types of learning: supervised learning,
unsupervised learning and reinforcement learning. We will discuss supervised and unsupervised
learning in this section.

Supervised learning is a paradigm in machine learning where a model is trained on a labelled
dataset, consisting of input-output pairs. The model is considered supervised as the correct an-
swer for each input is given, allowing the model to learn the mapping from inputs to the correct
outputs. In the context of machine learning, we measure the difference between the networks
predicted output and the actual value using a loss function. As seen before, the network learns
by minimising this loss function and updating the weights appropriately.

6



Ben H Detecting Network Based Intrusions using Neural Networks

Unsupervised learning is a machine learning paradigm where the algorithm is given unlabeled
data and tasked with discovering inherent patterns, structures, or relationships without being
provided specific labelled outcomes. The model is provided a cost function, which is some
function of the data and the network’s output. The cost function is dependant on the task at
hand and assumptions made about the problem. The network then learns by minimising this
cost function.

3. Neural Networks Applied to Network Data

In the following section a standard artificial neural network will be applied to the RT-IoT2022
dataset. We will begin by implementing a relatively simple NN to begin with and then increase
the complexity of the model in an effort to improve the performance of the model.

The NN will be constructed using PyTorch. PyTorch is an open-source deep learning framework
that provides a flexible and dynamic computational graph, enabling researchers and developers
to efficiently build and train neural networks.

3.1. Architecture and PyTorch Code

Our original model will be a fairly simplest model with only one hidden layer. The input layer
will have 94 neurons which matches the 94 features in our input data. The hidden layer will
have 16 neurons and the output layer will have two neurons corresponding to the two classes
(either a attack pattern or normal network traffic pattern).

Initialise the model by instructing PyTorch to use a GPU if one is available.

1 import torch

2 import torch.nn as nn

3

4 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

The algorithm begins by importing and processing the dataset from a local CSV file which
contains the data to analyse. Note that the data has already been appropriately normalised and
preprocessed, as discussed in section 1. We also split the training data into training and testing
datasets. The testing dataset will be used to train the model and the testing dataset will be used
to evaluate the models performance.

1 import pandas as pd

2

3 # Load dataset

4 df = pd.read_csv(’.\data\RT_IOT2022_sanitised.csv’)

5

6 # Split into training and testing dataframes

7 # Shuffle the dataset

7



Ben H Detecting Network Based Intrusions using Neural Networks

8 df = df.sample(frac=1, random_state=42).reset_index(drop=True)

9

10 train_size = int(0.8 * len(df))

11 train_df = df.iloc[:train_size, :]

12 train_df = train_df.reset_index(drop=True)

13 test_df = df.iloc[train_size:, :]

14 test_df = test_df.reset_index(drop=True)

A custom dataset class is then defined. The class is designed to take a pandas DataFrame as
input, which is stored as a class attribute. The len method is implemented to return the total
number of samples in the dataset, which is equivalent to the number of rows in the provided
DataFrame. The getitem method is implemented to retrieve a specific sample from the
dataset given an index (idx). This method returns the features and the labels for a particular
index in the DataFrame.

1 from torch.utils.data import Dataset, DataLoader

2

3 class CustomDataset(Dataset):

4 def __init__(self, dataframe):

5 self.dataframe = dataframe

6

7 def __len__(self):

8 return len(self.dataframe)

9

10 def __getitem__(self, idx):

11 features = torch.tensor(self.dataframe.drop(’class’, axis=1).iloc[

idx, :].values, dtype=torch.float32)

12 target = torch.tensor(self.dataframe.loc[idx, ’class’], dtype=torch

.float32)

13 return features, target

14

15 # Load data into a custom dataset

16 train_dataset = CustomDataset(train_df)

17 test_dataset = CustomDataset(test_df)

These custom datasets (one for testing and one for training) are then loaded into a PyTorch
DataLoader object. The DataLoader object is a utility that provides an efficient way to load and
iterate over datasets. We’ve specified a batch size of 100, meaning the model will trained on
a subset of data (in this case 100 samples) before updating the weights. This means that the
model’s weights will be updated multiple times during each epoch of training.

1 batch_size = 100

2 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=

True)

8



Ben H Detecting Network Based Intrusions using Neural Networks

3 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False

)

The model is then defined in a class which is inherited from the nn.Module class. The class
defines the layers in the neural network and the activation functions used at each layer, in this
case the ReLU and Linear activation functions. The class also defines how the forward pass will
be performed in the forward function; namely, how the activation of each neuron in the network
will be calculated.

The loss and optimiser are also defined in section. We are using Cross Entropy Loss for the loss
function and Stochastic Gradient Decent for the optimiser function.

1 class NeuralNet(nn.Module):

2 def __init__(self, input_size, hidden_size, num_classes):

3 super(NeuralNet, self).__init__()

4 self.l1 = nn.Linear(input_size, hidden_size)

5 self.relu = nn.ReLU()

6 self.l2 = nn.Linear(hidden_size, 16)

7 self.relu2 = nn.ReLU()

8 self.l3 = nn.Linear(16, num_classes)

9

10 def forward(self, x):

11 out = self.l1(x)

12 out = self.relu(out)

13 out = self.l2(out)

14 out = self.relu2(out)

15 out = self.l3(out)

16 return out

17

18 # Define hyperparamters

19 input_size = train_df.shape[1] - 1

20 hidden_size = 16

21 num_classes = 2

22 num_epochs = 10

23 learning_rate = 0.01

24

25 # Define model

26 model = NeuralNet(input_size, hidden_size, num_classes).to(device)

27

28 # loss and optimiser

29 criterion = nn.CrossEntropyLoss()

30 optimiser = torch.optim.SGD(model.parameters(), lr=learning_rate)

A training loop is then performed. The training loop iterates over the number of training epochs

9



Ben H Detecting Network Based Intrusions using Neural Networks

with an inner loop iterating over the batches in the training dataloader. The features and labels
are also moved the GPU device if one is available. The NN is then used to make predictions
based on the input features, as part of the forward pass. The loss is also calculated at this stage.

The optimiser’s gradients are zeroed using optimizer.zero grad() to prevent accumulation from
previous iterations. The backward pass is then completed where the gradients of the loss with
respect to the model parameters are computed. The optimiser then performs a parameter update
based on the computed gradients.

1 n_total_steps = len(train_loader)

2 for epoch in range(num_epochs):

3 for i, (features, labels) in enumerate(train_loader):

4 features = features.to(device)

5 labels = labels.to(device)

6 labels = labels.long()

7

8 # forward

9 outputs = model(features)

10 loss = criterion(outputs, labels)

11

12 # backward

13 optimiser.zero_grad()

14 loss.backward()

15 optimiser.step()

16

17 if (i+1) % 5 == 0:

18 print(f’Epoch {epoch+1} / {num_epochs} | Step {i+1} / {

n_total_steps} | Loss = {loss.item():.4f}’)

The algorithm then performs the testing validation over the testing dataset. The model is used
to make predictions based on the input features. The torch.max function is used to obtain the
predicted class indices. After processing all the batches in the testing dataset the accuracy of
the model is then calculated.

1 with torch.no_grad():

2 n_correct = 0

3 n_samples = 0

4 for features, labels in test_loader:

5 features = features.to(device)

6 labels = labels.to(device)

7 outputs = model(features)

8

9

10 # value, index

10



Ben H Detecting Network Based Intrusions using Neural Networks

11 _, predictions = torch.max(outputs, dim=1)

12 n_samples += labels.shape[0]

13 n_correct += (predictions == labels).sum().item()

14

15 acc = 100.0 * n_correct / n_samples

16 print(f’Accuracy = {acc}’)

3.2. Accuracy and Hyperparameter Tuning

Our model, with 94 input features, a hidden layer with 16 neurons and 2 output neurons achieved
an accuracy of 88.5% after training for 10 epochs. This suggests that our relatively simplistic
model fails the capture patterns in this dataset appropriately. In particular, the model is unlikely
to capture the highly non-linear relationships between input features and the output labels. In
this section we will experiment with hyperparamter tuning to improve the models performance.

Increasing the number of parameters in the model increases the model’s capacity. More parame-
ters provide the neural network with greater flexibility and capacity to capture intricate patterns,
dependencies, and non-linearities in the input data. One simple way to increase the number of
parameters in the model is to increase the number of nodes in our hidden layer. For example
lets increase the number of hidden neurons to 64.

1 class NeuralNet(nn.Module):

2 def __init__(self, input_size, hidden_size, num_classes):

3 super(NeuralNet, self).__init__()

4 self.l1 = nn.Linear(input_size, 64)

5 self.relu = nn.ReLU()

6 self.l2 = nn.Linear(64, 64)

7 self.relu2 = nn.ReLU()

8 self.l3 = nn.Linear(64, num_classes)

9

10 def forward(self, x):

11 out = self.l1(x)

12 out = self.relu(out)

13 out = self.l2(out)

14 out = self.relu2(out)

15 out = self.l3(out)

16 return out

In this case the model achieves an accuracy of 90.3% which is a minor improvement on our pre-
vious accuracy. This suggests the increasing the number of neurons in the hidden layer allows
the model to capture non-linear relationships in the data. However, increasing the number of
hidden neurons past this value had a negligible effect on the accuracy of the model. The next
step is to add a second hidden layer and fine-tune the number of neurons in each hidden state.

11



Ben H Detecting Network Based Intrusions using Neural Networks

We add a second hidden layer with 64 neurons as an initial test.

1 class NeuralNet(nn.Module):

2 def __init__(self, input_size, hidden_size, num_classes):

3 super(NeuralNet, self).__init__()

4 self.l1 = nn.Linear(input_size, 64)

5 self.relu = nn.ReLU()

6 self.l2 = nn.Linear(64, 64)

7 self.l3 = nn.Linear(64, 64)

8 self.l4 = nn.Linear(64, num_classes)

9

10 def forward(self, x):

11 out = self.l1(x)

12 out = self.relu(out)

13 out = self.l2(out)

14 out = self.relu(out)

15 out = self.l3(out)

16 out = self.relu(out)

17 out = self.l4(out)

18 return out

The model’s accuracy remains fixed at 90.3% for this modified model. Additionally, increasing
the number of hidden layers does not significantly alter the performance of the model. Training
the model for more epochs also does not increase the model’s performance. This could suggest
that the optimised of loss function used by the model is not optimal.

Instead lets use the popular Adam optimiser for our training algorithm.

1 # loss and optimiser

2 criterion = nn.CrossEntropyLoss()

3 optimiser = torch.optim.Adam(model.parameters(), lr=learning_rate)

This increases the accuracy of the model to 95% when considering a model with one hidden
layer. However, increasing the number of hidden layers in the model does not improve the
accuracy.

After tuning various hyperparmeters of the model the best accuracy that could be achieved on
the dataset was 96.5%. This used the updated Adam optimiser and a learning rate of 0.02.

3.3. Learning Curve

A learning curve is a graphical representation that depicts the relationship between a model’s
performance and the amount of training data or the number of training iterations (epochs).
Learning curves consist of a training performance and a validation performance; typically this

12



Ben H Detecting Network Based Intrusions using Neural Networks

FIG. 2: The diagram shows the accuracy of the training dataset and the validation dataset by the

number of training samples given to the model. The training accuracy is shown in blue and the

validation accuracy is shown in black. Each dataset has the standard deviation show in the respective

shaded colour. The training and validation performance reach a rough plateau over the training dataset

suggesting that adding further training samples into the model will not improve its performance. The

optimal number of training samples is anywhere in the region from 2000 to 4000 samples from the

original dataset.

is the accuracy of the model. This is plotted against the number of training epochs or the total
number of training samples supplied to the model.

If both the training and validation performance are poor and do not improve with additional data
or iterations, it may indicate underfitting. The model is not capturing the underlying patterns in
the data.

If the training performance is significantly better than the validation performance, and the gap
increases with more data or iterations, it suggests overfitting. The model may be memorising
the training data but failing to generalise to new data.

If both the training and validation performance stabilise and reach a plateau, it indicates that the
model has likely converged and further training may not significantly improve performance.

Figure 2 shows the learning curve for the model by the total number of training samples supplied
to the model. As can be seen the model has reached a rough plateau with the training accuracy
and the validation accuracy reaching a rough convergence. Therefore, it is unlikely that adding
more training data into the model will improve performance.

13



Ben H Detecting Network Based Intrusions using Neural Networks

FIG. 3: The diagram shows the accuracy of the training dataset and the validation dataset by the

number of epochs that the model is trained for. The training accuracy is shown in blue and the

validation accuracy is shown in black. The training and validation performance reach a rough plateau

over the training dataset suggesting that training epochs for the model will not improve its performance.

We can see that the optimal number of epochs for training is roughly 20.

Figure 3 shows the learning curve for the model by the total number of epochs that the model
is trained for. Again the model reaches a rough plateau after roughly 20 training epochs, with
the training and validation accuracy converging. This suggests that training the model for more
than 20 epochs will not improve its performance significantly.

3.4. Final Model

After performing our model hypertuning to identify the best optimiser algorithm, model archi-
tecture and learning rates, the model can be further improved using the results of our learning
curves to further enhance the model.

The final model uses the Adam optimiser with a learning rate of 0.01. The model has a single
hidden layer with 128 nodes. The number of epochs that the model is trained on is 20 and the
total number of samples taken from the original dataset for training, validation and testing is
4000. The final model has an accuracy of 97.5%.

14



Ben H Detecting Network Based Intrusions using Neural Networks

4. Conclusions

In conclusion, this paper has analysed the requirements for data preprocessing and the impor-
tance of appropriately normalising and transforming data before it is provided to a NN. We also
outlined the basic building blocks and functionality of a NN and gave a brief overview on how
the NN model is trained. We then looked at a practical application of NN to the RT-IoT2022
network data, and trained the model to detect attack patterns in the network. The model’s hy-
perparameters were manually tuned to improve the performance of the model. We also used
learning curves to identify the optimum number of training samples and training epochs for our
model.

The NN was successfully able to identify attack patterns and normal traffic patterns with a final
accuracy of 97.5%. The final accuracy of the model is reasonably good and certainly provides
a useful baseline model for an intrusion detection systems (IDSs). However, such a detection
system would likely need to employ other detection mechanisms alongside this model to fully
account for all possible attack patterns. Furthermore, our model can only detect attack patterns,
but can give no formalisation for what kind of attack pattern was taking place. An extension
of this model could be to formulate a multi-class classification problem which classifies inputs
into particular attack patterns rather than just a binary normal network traffic and attack pattern,
as we have done in this research.

15


	Preprocessing and Data Analysis
	Neural Networks
	Artificial Neurons
	Activation Functions
	Learning
	Types of Learning

	Neural Networks Applied to Network Data
	Architecture and PyTorch Code
	Accuracy and Hyperparameter Tuning
	Learning Curve
	Final Model

	Conclusions

