Benford’s Law as an Extension of Zipf’s Law

Analytically, samples taken from a log-uniform distribution comply with Benford’s law
(BL). A statistical derivation of Benford’s law, originally given by Hill, relies on this fact.
Zipf’s law describes the occurrence of words in a given languages and follows a similar
digit law to BL. When a language has an infinite number of words Zipf’s law reduces to the
Riemann Zeta function. By considering an extension of Zipf’s law as a summation of an
uncountable infinite number of languages, each with an infinite number of words, we show
a connection between Zipf’s law, the Zeta function and Benford’s law. This immediately
extends the BL beyond its classical definition and provides a rich mathematical structure to

the theory which is related to the Zeta function.
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1. Introduction
1.1. Benford’s first digit law

Benford’s law (BL)—also referred to as the Newcomb-Benford law—describes the phe-
nomenon that the probability of the digits 1,2, ...,9 to occur in the first index in a number for
many real-world data sets is not uniformly distributed [2]. Newcomb gave the first statement
of the first-digit law after realising that the first pages of logarithmic tables wear out faster than
subsequent pages [10]. Benford extended this idea by manually analysing twenty naturally
occurring datasets for conformity with Newcomb’s observation.
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Benford’s law arises as many datasets, particularly naturally occurring datasets. This is
counter-intuitive as, at the surface, there appears to be no reason why the occurrence of digits
in the first index would not be uniformly distributed. However, Hill gave a statistical proof of
Benford’s law, which relied on the assumption that the underlying distribution was log-uniform
rather than uniformly distributed. For instance, the Fibonacci numbers, whose underling dis-
tribution is a log-uniform distribution, appear in the growth patterns of sunflowers, pinecones
and other plants and flowers [11]. Fundamentally, naturally occurring datasets arise from the
ratio of two distinct quantities, which in turn brings their distribution close to a log-uniform
distribution; therefore, they are often compliant with Benford’s law [? ]. Benford’s law has
been applied to a variety of different scientific fields including, astrophysics [6], biophysics [S];
geophysics [7]]; particle physics [[13] and quantum critical phenomena [4]]. This allows for data
trends and anomaly detection in a computationally simple way. Further applications of Ben-
ford’s law can be found at [[1]].

1.2. Benford’s Law and Anomaly Detection

Benford’s law allows researchers and analysts to summarise large amounts of data and test
for conformity with a log-uniform distribution. As with all such analysis, there may be com-
pelling reasons for a dataset conforming, or conversely not conforming, with Benford’s law.
Additionally, one of the challenges with analysing datasets for conformity with any digit based
law is the availability of a reliable control group. Since Benford’s is effective in analysing
changes between two similar datasets [? ], its usually appropriate to compare the results of
a Benford analysis between datasets. However, as all log-uniform datasets are Benford, such
distributions can be used as a basis to understand the conditions in which Benford’s law applies
to particular datasets. Considering small perturbations away from log-unfoirom distributions
and distributions which span a relatively small number of orders of magnitude will give further
insight into the applicability of Benford’s law.

Benford’s law has been used extensively in the field of anomaly and fraud detection ranging
from music streaming [9], data quality assessments data [14]], cryptocurrency transactions [?
, chen2022antibenford]isrepresented socio-economic data [[12] and psychological based pric-
ing [3]]. Intervention or manipulation of data often alters the conformity of a dataset with Ben-
ford’s law. Such intervention may be intentional or a result of some external factor or systemic
another change to the underlying dataset. For example, changes in the taxation of a financial
asset my alter the buying and selling of that asset class in order to minimise the tax paid. A
change in conformity with Benford’s law does not necessarily mean that data has been fraudu-
lently changes but often indicate that some fundamental change has taken place that should be
investigated further.
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2. Benford distributions

This section looks at the mathematical definition of Benford’s law and log-uniform distri-
butions. We also explore the connection between geometric series and Benford’s law and give
examples which are and are not Benford compliant.

2.1. Benford’s Law

The term index is used to refer to a position in a number. At each index there will be an
integer 0,1, 2,...,9. Indexes begin at the first significant digit in a number. For example, for
the integer 6301, the first index D, references the first position with a digit of 6, the second
index D, references the second position, with a digit of 3 and similarly for the third and fourth
indexes. In this case we would stay that Dy = 6, Dy = 3, ... or (D1, Dy, D3, Dy) = (6,3,0,1).
By assumption D, is non-zero.

2.2. Zipf’s Law

Zipf’s Law is an empirical observation about the distribution of frequencies of items in a
dataset. Named after linguist George Zipf, the law suggests that in many natural language
corpora and other types of datasets, the frequency of the most common item is approximately
inversely proportional to its rank. In simpler terms, the second most common item appears half
as often as the most common one, the third most common item appears one-third as often, and
so on. This power-law distribution indicates that a small number of items dominate, while the
vast majority occur relatively infrequently.

Mathematically, Zipf’s Law can be defined using the equation:

where:

* f(r) is the frequency of an item at rank r,
* cis a constant that depends on the dataset,

* sis a scaling parameter (usually close to 1) that determines the steepness of the distribu-
tion.

An illustrative example of Zipf’s Law can be found in the word frequencies in a large text
corpus. In the English language, a small set of high-frequency words (such as ‘the’, ‘of’, ‘and’)
occur very frequently, while the vast majority of words occur less often. The most common
word, ‘the’, appears far more often than the second most common word, ‘of,”. This distribution
is often called ‘heavy-tailed’ because it has a long tail of infrequent items.

If consider Zipf’s law for a language with an infinite number of words, then the normalisation
constant in Zipf’s law converges to the Riemann Zeta Function[??]:
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FIG. 1: The two plots show Benford’s law applied to a log uniform dataset in the range [1, 10'°] with a
total of 10% datapoints. The lefthand plot shows the first digit law and the righthand plot the second
digit test. The expected value of the occurrence, F; , are in accordance with Benford’s law, plotted as a
cross, with error bars equal to the Poisson noise, V/E;. The actual observed occurrences, O; , are shown
for each digit as a bar. For conformity, we expect the residuals to be normally distributed with a
variance less than one. In this case, all the residuals are within one standard deviation of the mean
(zero) indicating conformity with Benford’s law. d* is a metric, which will later be defined, used to

measure conformity of datasets with Benford’s law, which will be discussed later in this paper.

2.3. Log-Uniform Distribution

A distribution is log-uniform if the logarithm of the analysed variable is uniformly dis-
tributed. In other words, if X is a random variable with a uniform distribution, then log;, X has
a log-uniform distribution.

In terms of the probability distribution function (PDF) a log-uniform distribution can be
classified in the following way. Let X be log-uniformly distributed over the range [a, b] with
a < x < b,Vx € X. Then the PDF is given by:

1 o
log, b —log.a]  zlog, g '

f(z;a,0) = - ey)

By taking the limiting case where a := 0 and b — oo we can derive Benford’s first digit law
(or indeed any other digit law we require). This is done by considering the ranges for which the
index D, admits a first digit d; and normalising over the entire range of data. This can be done
across different base representations and over finite ranges, which gives rise to the finite range
Benford Law’s.

Figure 1. shows Benford’s law applied to log-uniform data generated in the range [0, 10
which spans 10 orders of magnitude. The plot shows the expected and observed first digit
counts and the normalised residuals for these values. As all residuals are within the Poisson
error of the observed data we can conclude that the distribution complies with Benford’s law.
More rigorous methods to measure conformity with Benford’s law will be discussed later in this
paper.

As geometric series are log-uniform [3]], generating log-uniform data is equivalent to gener-
ating a geometric series starting as a and ending at b with the desired number of terms in the
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FIG. 2: The two plots show Benford’s law applied to two naturally occurring datasets. The lefthand
plot shows the first digit law applied to the first 100 Fibonacci numbers and the righthand plot shows the
same law applied to all known generators of Mersenne primes (currently 51). The expected value of the
occurrence according to Benford’s law is plotted alongside the observed occurrences. The residuals are

shown in the lower subplot in each figure. As all the residuals are within one standard deviation of the
mean (zero), this indicates conformity with Benford’s law. dx is a metric, which will later be defined,
used to measure conformity of datasets with Benford’s law, which will be discussed later in this paper.

The Fibonacci numbers are log-uniform at higher terms, as the series converges to a geometric series

with the geometric ratio being the Golden ration. The Mersenne primes generators are roughly

log-uniform as the distribution of the ratios between subsequent terms is normally distributed with a

small standard deviation.

sequence. This process has been previously investigated by [3] in the context of Benford’s law.

Several naturally occurring series, such as the Fibonacci series and the Mersenne prime
generators are Benford; as shown in Figure.2. Indeed these distributions appear to be roughly
log-uniform. Whilst conformity is less pronounced during an initial inspection of the plots, this
is to be expected, as each plot has fewer associated data points leading to larger Possion noise.
All residuals are within one standard deviation of the expected observation due to Benford’s
law, indicating conformity.
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3. Benford’s Law as an Edge Case of Zipf’s Law

Consider Zipf’s law applied to a language with an infinite number of words. Then the nor-
malisation constant in Zipf’s law is equivalent to the Riemann Zeta function. Consider the
following Benford ratio defined as:

C(S)|D1=d1
¢(s)

which is the ratio of the Zeta function summed over the first digit D, to the Zeta function

B(s; Dy =dy) := 2)

itself. Now Zipf’s law is only defined for s > 1. Consider the edge case where s = 1 and
consider a continuation of the Zipf normlisation where sums are replaced by integrals. Then:

Dip._ _xd 1
B@:1Jn=dg=“253“—y%gﬁ;f:m&<r+a>, 3)
0 =z

which is mathematical statement of Benford’s law. Zipf’s law in the continuous case can be
interpreted as a superposition of an uncountable infinite number of infinite word languages’[?7].
In this case we arrive at Benford’s law. Therefore, Benford’s law can be loosely interpreted as
the superposition of the Riemann zeta function[??] over different modes of vibration given by
the state parameter s. As such, Benford’s law and Benford ratios provide a rich mathematical
structure which is related to the Zeta function and further generalisations of Benford’s law.

3.1. Perturbations Around Zipf’s Law

We have already discussed Zipf’s law and its relation to the Riemann Zeta function as the
case where the language considered has an infinite number of words. However, it is unclear how
this relates to Benford’s law and its generalisations. Firstly, we can consider small perturbations
around ((1) by introducing the parameter e. Consider the following ratio:

g(l + €>\D1=d1
C(1+e¢)

This is similar to[d|except we have introduced a prefactor term C' to ensure that normalisation

B(s=14+¢Dy=dy)=C 4

holds; that is, the sum over the possible values of D; is one. By considering different values
of € we can introduced perturbations around Zipf’s law. We can then analyse conformity with
Zipf’s law at these varying perturbations.

3.1.1. Measuring Conformity

To measure conformity with Zipf’s law we can use the widely adopted x? and reduced 2 [8]
test statistics. These statistics have their own benefits and drawbacks, however the motivation
for their use is their simplicity to calculate and their clear and well understood interpretation.

The y? statistic for discrete data takes the form [§]]

0, — E)?
X = Z%, 5)

7
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FIG. 3: The two plots show the change in the x? statistics under perturbations away from Zipf’s law.
We have taken the limit where the language considered has an infinite number of words and have, as
such, considered variations around ¢ (1 + €). Each calculation considers 10000 terms in the The lefthand
graph shows variations away from both Zipf’s law and the probability distribution given by Benford’s
law according to x2. In both cases a similar trend is followed with relatively good conformity around
€ 0. Indeed 2 diverges at ¢ = —1.0 with a local maxima and minima at ¢ ~ —1.0 and —1.34, 0.0,
respectively. The plot also appears to have an infinite discontinuity at ¢ = —1; that is, at ((0). The
similarity between the Zipf and Benford probability distributions suggests a connection between the

two laws. The righthand plot shows the same result expanded over a larger set of values of e.

where E; is the expected occurrence as calculated from the probability distribution, and O; is
the observed occurrence. When calculating the likelihood of a value of X2 to occur, the reduced
x? statistic, x2, is useful:

=X ©6)

For a dataset with v degrees of freedom a value of the x? roughly equal to one indicates a
good match with the parent distribution. In our case, if the perturbed dataset has a x? value
roughly equal to (or less than) one then the observed distribution complies well with Zipf’s law.

3.2. Conformity With Zipf’s Law

By calculating the 2 statistic for various values of ¢ we can observe any variability. [3|shows
the x? and x2 metrics for deviations around Zipf’s law. Each language in question encompasses
an infinite number of words. We’ve considered deviations around ((1 + €) with each series
being evaluated with 10* terms. The Benford ratio is then taken — the ratio between the sum of
terms with first significant d, and the entire series.

In both plots we observe deviations from both Zipf’s law and the probability distribution
derived from Benford’s law at certain values, evaluated via the the x? statistic. Similar patterns
emerge in both cases with good conformity when € is proximate to zero. However, the ratios
diverges at at ¢ = —1.0 with an infinite discontinuity, suggesting the both Zipf’s and Benford’s
law are not defined for s = 0. We therefore do not expect Zipf’s law to have a continuous
extension to arbitrary values of s in the Zeta function. Furthermore, intriguing local maxima
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FIG. 4: The lefthand and righthand plots show Zipfs and Benford’s law applied to the first 1000 terms
in the Benford ratio respectively. The sum has been taken from O to the current term (less that 1000).
The digit 5 is significantly more likely to occur when applying Zipf’s law (when considering an infinite
number of words in the language) compared with Benford’s law. In general, the form of each
distribution is similar with higher significants being less likely to occur than lower significants in the
first index. However, this characteristic does not hold for the significant 5, showing that whilst Zipf’s
and Benford’s law have some similarities, the underlying distributions do differ in some respects. For
Zipf’s law, the expected occurences have been determined by calculating the Benford ratio for each

significant with 10° terms in each sequence.

and minima can be observed at ¢ ~ —1.0, —1.34 and € =~ —1.0, 0.0, respectively. We therefore
expect poor conformity with Zipf’s law around the former maxima and better conformity around
the latter minima.

Additionally, we see similar levels of conformity for both Zipf’s and Benford’s law sug-
gesting that the two laws may be interlinked — that is, Benford’s law is a continuous exten-
sion of Benford’s law. However, it should be noted that the two observations yield different
probability distributions. However, in the case that s = 1 they do yeild relatively similar
properties. The main difference when compared with Benford’s law is that for Zipf’s law
P(D; = 4) < P(D; = 5), showing a greater proportion of the fist significant of 5. In the
case of Benford’s law P(D; = © < D; = y for all y > z. However, this property does not
appear to be evident when considering Zipf’s law.

This phenomena can be clearly seen when viewing ] The underlying dataset consists of
the first 1000 terms of the Benford ratio. Zipf’s and Benford’s law has then been applied to the
resultant distribution. For Benford’s law, the occurrence of subsequent significants are predicted
to be less likely than the current significant. This property does not hold for Zipf’s law, with
the significant 5 appears more frequently that the significant 4. This shows that whilst both
distributions have a similar mathematical structure, the underlying distributions differ. Just
because a distribution complies with one of these laws the same does not necessarily hold for
the other. Indeed it will be unlikely that the Benford ratio of a sample distribution is compliant
with both Benford’s and Zipf’s law.

Another point to note is that introducing deviations from Zipf’s law will alter the normalisa-
tion required to ensure all probabilities sum to one. Therefore, when calculating generalisations
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FIG. 5: Convergence of the Benford ratio applied to Zipf’s law converges. The X-axis shows
subsequent terms in the series and the Y-axis shows the value of each significant in the sum. For e = 0
the significants sum to one, showing that Zipf’s law is suitably normalised in this case. However, for
values away from € = 0, the signifcants are not normalised, and a suitable normalisation C' needs to be
applied. As has been seen previously in[3]there is not normalisation at e = —1 due to an infinite

discontinuity.

of Zipf’s law away from s = 1 it is important to ensure that all probabilities are suitably nor-
malised. This cannot be done when s = —1 due to the infinite discontinuity in the Zeta function.

3.3. Convergence of the Zipf’s Normalisation

The Benford ratio, as defined in equation[d] converges for ¢ = 0. In this case there is no need
to normalise the ratio as each of the significant occurrences sum to one. In this case we can set
C=1.

For other values of € not equal to zero we have convergence away from ¢ = —1. However,
the ratio does need to be suitably normalised for the probabilities to sum to one.
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4. Generalised Benford’s Law

We have seen previously that Benford’s law is derived from the generator f(z) = a1,

which gives the desired PDF. The generalised BL considers other generators aside from the
log-uniform generator — thus generalising the law to other distributions.

Consider an integral over the generator g(x) := 2~ with a € R|a # 1. The the new PDF
can be written as:

1
P(Dy = dy) = J ]}lmdfddx,
1 zo

a function of d; and a. The integral can be taken from zero to infinity, however, this gives
the same end result as taking the integral from 1 to 10.

Note that the numerator of this equation has first significant d; when D; is in the range
[d1,d; + 1). Therefore, the PDF reduces to:

(dy + 1) — i
10t-e — 1
Note that there is an infinite discontinuity at @ = 1, the case of BL. Consider now some

special cases for a.
Firstly, at a = 0 we recover a uniform distribution of first digits:

(di+1)'—dp 1
10t—-1 9
At a = —1 we generate a linear distribution, with nine instead being the most prominent

P(D1 :dl) =

significant.

5. Conclusion

This research argues that there is a fundamental connection between Zipf~ law, the Riemann
Zeta function and Benford’s law. Benford’s law can be loosely interpreted as the superposi-
tion of the Riemann zeta function which in turn is the superposition of a unaccountably infinite
number of infinite word languages. Therefore study of Benford’s law could unlock a rich math-
ematical structure and allow for further extensions of Benford’s law beyond log uniform distri-
butions. However, significant differences do occur between Zipf’s and Benford’s law. Indeed,
in the traditional sense, Zipf’s law can only be applied to language based data and Benford’s
law to numerical datasets. However, when considering the extension via Benford ratios, it is
possible to compare the two techniques.
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