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1 Formulation of Benford’s Law for Time Series Analysis

The classical form of Benford’s law assumes that the Benford set spans many orders of
magnitude1. In fact, this is often one of the factors that makes naturally occurring datasets
likely to conform with BL 2.

1.1 Classical Benford’s Law

Benford’s law, in essence, is a property of distributions with densities of the form f(x) ∝
1/x – that is, the distribution is scale-invariant. Statistical applications of BL are used
to determine whether a set was sampled from such a distribution. A derivation of this
result, therefore, assumes the underlying probability density function (PDF) describing the
distribution is of the form:

f(x) ∝ 1

x

Theorem 1 (Benford’s Law) Consider a set L which is log-uniformly distributed in the
range [0,∞). Then the probability of the integer d1 ∈ {1, 2, ..., 9} to occur in the first index
D1 is,

P [D1 = d1] = log

(
1 +

1

d1

)
. (1)

More generally, let D be an n-digit integer D =
∑n

i=1 di×10n−i = d1×10n−1+d2×10n−2+
...+ dn. Then the probability of D to appear in the first n digits of a number is,

PD(n) = log

(
1 +

1

D

)
. (2)

According to BL, if a set is Benford, the first digit of numbers is far more likely to be 1
(about 30%) than 2 (18%), continuing in this pattern to 9 (5%). This is contrary to one’s

1. Mathematically, this is not a requirement but a general rule of thumb for practical applications of BL.
For base-10 representations, any range [1 × 10n, 1 × 10m) with n,m ∈ N, n < m where the underlying
distribution is proportional to a log-uniform will suffice. Indeed, a union of such intervals will be Benford.

2. More generally, [1] suggests the key condition for BL to hold is that the PDF should be Riemann
integrable on the positive real numbers and span many orders of magnitude, with the error from replacing
discrete sums by integrals being small. However, for this work, we will consider PDF’s proportional to
a log-uniform distribution.
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intuition – we might expect all digits to have the same probability of appearing. However,
for such Benford distributions, this is not the case.

Proof See [1] for a full proof of the result. An intuitive sketch of the proof is given below
for the first digit case, where we assume the PDF is scale-invariant3 (as is the case for 1/x).

The logarithm of any number x can be written as log10(x) = n+α, where n is an integer
and α is the mantissa or fractional part, with 0 ≤ α < 1. The first digit of x is d1 if and
only if:

log10(d1) ≤ α < log10(d1 + 1)

Since the distribution of the mantissas is uniform in a scale-invariant distribution, the
probability of the mantissa falling in this interval is simply the length of the interval.

P [D1 = d1] =

∫ log10(d1+1)

log10(d1)
1 · dx = log10(d1 + 1)− log10(d1) = log10

(
d1 + 1

d1

)

Remark 2 A natural question arises: what is the most general analytic form of a scale-
invariant distribution? By definition, a distribution is said to be scale-invariant if under
the transformation x 7→ cx for c > 0, the probability law is preserved up to normalisation.
Formally, this requires

f(x) dx ∝ f(cx) d(cx).

Suppose, more generally, that the density has the power-law form f(x) ∝ x−α for some
α > 0. Then

f(cx) =
1

cα
f(x).

For exact scale invariance, the distribution must reproduce itself under arbitrary rescalings
c, which is only possible when α = 1. Thus the unique analytic form of a scale-invariant
density is

f(x) ∝ 1

x
.

Of course, this is not normalizable over the full range (0,∞). Instead, one considers a
restricted support x ∈ [a, b], where the normalized form is the log-uniform distribution:

f(x) =
1

x log(b/a)
, a < x < b.

Philosophically, one could take Benford’s law as emerging not from any mysterious nu-
merological principle, but simply from the assumption of such scale-invariant laws of na-
ture. In the limit where the interval [a, b] spans many orders of magnitude, the mantissas
of log10(x) are uniformly distributed, and Benford’s law follows inevitably.

3. More generally, we would need to consider another condition – that is the distribution should be invariant
under a change of base
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Remark 3 Benford’s Law often applies to datasets that are not themselves exactly log-
uniform distributions of the form 1/x but still exhibit scale invariance. These distributions
tend to span several orders of magnitude and often arise from multiplicative processes or
combinations of different data sources. For example:

• Log-normal Distributions: The log-normal distribution is a common example. If a
variable is log-normally distributed, its logarithm is normally distributed. As a re-
sult, when the set spans a wide range, the distribution of their logarithms becomes
approximately uniform, leading to the Benford pattern.

• Power-Law Distributions: Many natural and social phenomena follow a power-law
distribution, where the frequency of an event is proportional to a power of its size.
Examples include city populations and word frequencies. These distributions are also
scale-invariant and typically adhere to Benford’s Law.

• Exponential Distributions: The exponential distribution, often used to model waiting
times, can also conform to Benford’s Law for certain parameters.

• Combinations of Distributions: Datasets created by combining numbers from various
unrelated sources, such as a collection of different statistical tables, often obey Ben-
ford’s Law. This is due to a central limit theorem for products of random variables,
where the distribution of the logarithms of the products tends toward uniformity

BL is a fascinating result in and of itself, and has many direct applications in the classical
form. However, for the analysis of time-series data, the series may not span many orders of
magnitude and may instead be constrained to a finite range. In such cases, our assumption
that the underlying set we are analysing spans many orders of magnitude is not met, and
we should not assume that BL is applicable. In such cases, we need to reformulate BL to
account for such a finite range, aptly referred to as the Finite Range Benford Law.

1.2 Finite Range Benford Law

A general requirement of a set to be Benford is that the distribution should span many orders
of magnitude. This is required for some distributions, such as log-normal distributions, but
not for others, such as log-uniform distributions. We would therefore like to construct the
mathematical framework for the application of Benford’s law to finite ranges. This will
allow us to determine how well a distribution that does not span a large range of values
conforms with BL.

The sampling density is proportional to 1/x and the observables are taken from a finite
multiplicative range (as before). Below n ∈ N denotes the number of leading (base-10)
digits we inspect and D denotes an n-digit integer, i.e. D =

∑n
i=1 di×10n−i = d1×10n−1+

d2 × 10n−2 + ...+ dn.

We define a set of numbers sampled from the density function4:

U = [ a× 10α, b× 10β ), 1 ≤ a < 10, 1 ≤ b < 10, α, β ∈ Z, α ≤ β.

4. When α = β the support lies inside a single decade [a × 10α, b × 10α); when α < β the support spans
multiple decades.
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The set of positive real numbers whose first n digits equal D is

ID =
⋃
m∈Z

[D · 10m−n+1, (D + 1) · 10m−n+1 ).

Define the probability of observing leading digits D (for n digits) by

PD(n) =

∫
U∩ID

dx

x∫
U

dx

x

.

Which is just the integral over the set of positive real numbers whose first n digits equal D
divided by the integral over the entire range.

We now state the two useful closed-form results (single-decade α = β, and multi-decade
α < β) in a compact form5.

Theorem 4 (Single-decade ( α = β ) finite-range formula) Let U = [a × 10α, b ×
10α) with 1 ≤ a < b < 10 and fix n ∈ N and D an n-digit integer. Define

A := a× 10n−1, B := b× 10n−1.

Then the probability that a random x ∈ U (with density ∝ 1/x) has leading n digits equal
to D is

PD(n) =

log10

(
min(D + 1, B)

max(D, A)

)
log10

(
b

a

) (3)

with the convention that the numerator is zero when the interval [D,D + 1) and [A,B) do
not overlap (so PD(n) = 0 in that case).

Proof Start from the integral definition

PD(n) =

∫ min(b×10α, (D+1)10α−n+1)

max(a×10α, D10α−n+1)

dx

x∫ b10α

a10α

dx

x

.

If the intersection in the numerator is empty the numerator is zero and the formula is trivial.
Otherwise perform the substitution

x = 10α−n+1 x′, dx/x = dx′/x′.

Under this rescaling the numerator integrates 1/x′ over [max(A,D), min(B,D+1) ) where
A = a×10n−1 and B = b×10n−1. Using

∫ v
u

dx′

x′ = ln(v)− ln(u) = ln(10)
(
log10 v− log10 u

)
,

5. Please also see [2] for a piecewise treatment of the case α < β
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the factor ln(10) cancels between numerator and denominator and we obtain

PD(n) =

log10

(
min(D + 1, B)

max(D,A)

)
log10

(
b

a

) ,

which is (3).

Remark 5 (Reduction to classical Benford) If a = 1 and b = 10 (i.e. U is a full
decade [10α, 10α+1)) then A = 10n−1 and B = 10n, the numerator equals log10((D +
1)/D) = log10(1 + 1/D) and the denominator equals log10(10) = 1, hence

PD(n) = log10

(
1 +

1

D

)
,

the standard Benford multi-digit law.

Theorem 6 (Multi-decade ( α ≤ β ) finite-range formula) Let U = [a × 10α, b ×
10β) with 1 ≤ a, b < 10 and integers α ≤ β. Fix n ∈ N and an n-digit integer D. Define
the rescaled endpoints

A := a · 10n−1, B := b · 10β−α+n−1.

Then

PD(n) =

β−α∑
k=0

max
{
0, log10

(min
(
(D + 1)10k, B

)
max

(
D 10k, A

) )}
β − α+ log10

( b

a

) (4)

where each summand contributes only when the k-th shifted D-block overlaps the rescaled
support [A,B).

Proof Begin with the definition

PD(n) =

∫
U∩ID

dx

x∫
U

dx

x

.

Decompose ID into disjoint decade-shifted blocks

ID =
⋃
m∈Z

[D · 10m−n+1, (D + 1) · 10m−n+1 ).
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Only those m for which [D · 10m−n+1, (D + 1) · 10m−n+1) intersects U = [a× 10α, b× 10β)
can contribute. Perform the rescaling

x = 10α−n+1 x′, dx/x = dx′/x′.

Under this map the data-support becomes [A,B) with A = a × 10n−1 and B = b ×
10β−α+n−1, and each block [D · 10m−n+1, (D + 1) · 10m−n+1) becomes [D · 10m−α, (D +
1) · 10m−α). Letting k = m−α we see the only relevant k are k = 0, 1, . . . , β −α. Thus the
numerator (logarithmic length of the overlap) equals the finite sum

β−α∑
k=0

∫
[A,B)∩[D10k,(D+1)10k)

dx′

x′
=

β−α∑
k=0

max
{
0, log10

(min
(
(D + 1)10k, B

)
max

(
D 10k, A

) )}
,

where we again used
∫ v
u

dx′

x′ = ln(10)(log10 v − log10 u) and dropped the common factor
ln(10). The denominator equals∫ b10β

a10α

dx

x
= ln(10)

(
β − α+ log10

b

a

)
,

so ln(10) cancels and we obtain (4).

Proposition 7 (Normalisation) For fixed n and the support U above, the probabilities
{PD(n)} sum to 1 over all n-digit D.

Proof [Sketch of proof] This follows because the sets ID partition the positive reals accord-
ing to initial n digits, so

∑
D 1ID(x) = 1 for all x > 0. Integrating 1/x over U and summing

over D allows interchange of sum and integral (finite or absolutely convergent sum in our
finite-range case) and yields

∑
D numerator = denominator. After cancellation this gives∑

D PD(n) = 1.

Corollary 8 (Recovery of classical Benford in the infinite-range limit) Let the finite-
range support be

U(α,β) = [ a · 10α, b · 10β ), 1 ≤ a, b < 10, α < β,

and let P
(α,β)
D (n) denote the probability from (4) associated with U(α,β) for fixed n ∈ N and

fixed n-digit integer D. Put
N := β − α.

Then, keeping a, b, n,D fixed and letting N → ∞ (equivalently letting the support expand
multiplicatively to cover all positive reals), we have

lim
N→∞

P
(α,β)
D (n) = log10

(
1 +

1

D

)
,

i.e. the finite-range probabilities converge to the ordinary (classical) Benford n-digit law.
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Proof Recall the multi-decade formula (with the rescaled endpoints as in the theorem)

P
(α,β)
D (n) =

N∑
k=0

Tk(N)

N + log10

( b

a

) ,
where for brevity we put N = β − α and each summand is

Tk(N) = max
{
0, log10

(min
(
(D + 1)10k, B(N)

)
max

(
D 10k, A

) )}
,

with A = a× 10n−1 (fixed) and B(N) = b× 10N+n−1 (grows with N).

(1) Each summand is uniformly bounded. For every k and N ,

0 ≤ Tk(N) ≤ log10

(D + 1

D

)
≡ LD,

because the overlap of any block [D10k, (D+ 1)10k) with [A,B(N)) cannot exceed the full
block length log10((D + 1)/D).

(2) There are N − O(1) full-block contributions. A summand Tk(N) equals the
full-block length LD precisely when

D · 10k ≥ A and (D + 1) · 10k ≤ B(N).

Taking base-10 logarithms these inequalities are

k ≥ log10

(A

D

)
and k ≤ log10

(B(N)

D + 1

)
.

Since log10(B(N)/(D+ 1)) = N +C1 for a constant C1 depending only on b, n,D (but not
on N), and log10(A/D) = C0 is a constant independent of N , it follows that the range of k
for which both inequalities hold has length(

N + C1

)
− C0 +O(1) = N −O(1).

Hence the number mN of indices k ∈ {0, . . . , N} with Tk(N) = LD satisfies

mN = N −O(1),

where the implicit O(1) is a constant independent of N (at worst depending on a, b, n,D).

Decompose the numerator. Write

N∑
k=0

Tk(N) = mN LD + RN ,

where the remainder RN sums the at most O(1) boundary/partial terms. By (1) and (2)
we have the bounds

0 ≤ RN ≤ C2,
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for some constant C2 independent of N (indeed RN is bounded by at most two partial-block
contributions plus a bounded number of zero terms).

Take the limit. Now

P
(α,β)
D (n) =

mN LD +RN

N + log10(b/a)

=

(
N −O(1)

)
LD +O(1)

N + log10(b/a)
.

Dividing numerator and denominator by N and letting N → ∞ gives

lim
N→∞

P
(α,β)
D (n) = LD = log10

(
1 +

1

D

)
,

which is the classical BL.

Remark 9 The basic result here is that the first and last decade in the set can only con-
tribute partially to BL – that is, all other ranges conform to BL fully according to (5) as
they all span a full decade. As we take N → ∞ the contribution of these decades at the
ends of the range becomes smaller and smaller and eventually vanish.

Remark 10 It is also clear that in the case that α = β we recover the single decade result
from (4). That is β − α = 0 and the sum

∑β−α
k=0 disappears, reducing to the signle term

k = 0. Therefore

Tk(N) = max
{
0, log10

(min
(
(D + 1)10k, B(N)

)
max

(
D 10k, A

) )}
,

becomes,

T (N) = log10

(min
(
(D + 1), B

)
max

(
D, A

) )
,

and the denominator

β − α+ log10

( b

a

)
simply becomes

log10

( b

a

)
giving the expected format predicted by (3).

1.3 Application of the FRBL

We have developed the mathematical framework for analysing the Benford distributions
over finite ranges. We now need to understand how to apply this formulation to datasets
and discuss statistical tests to measure conformity BL. We will visualise both BL and the
more general FRBL.
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1.3.1 Statistical Test: d∗

We introduce the d∗ metric, a test statistic that is based on the Euclidean distance between
observed and expected digit occurrences in a set. Morrow [3] introduces a definition for the
d∗ measure and computes the associated p values for the first digit test (which are dicussed
here [4])

d∗ =

√√√√N

9∑
i=1

(pi − bi)2, (5)

where pi is the observed proportion of digits in the first index having a value i ∈ {1, 2, ..., 9}
and bi the corresponding expected probability according to BL, and N is the size of the set
being analysed for conformity with BL. We can extend the definition of d∗ to other digit
tests as follows,

d∗ :=

√
N

∑
i

(pi − bi)2, (6)

where pi is the proportion of observations having i = (dn, ..., dm, ..., d2, d1) as the
(Dn, ..., Dm, ..., D2, D1) indexes and bi the corresponding expected proportion according to
BL. The sum runs over all possible digit sequences in the indexes (Dn, ..., Dm, ..., D2, D1).

We will use Morrow’s definition of the d∗ statistic to gauge conformity with BL and
the FRBL. Rather than analysing the p-values directly, we will primarily be interested
in changes in d∗ between different sets of data and, in particular, different time series.
However, losely speaking, a lower value of d∗ corresponds to better conformity with a
Benford distribution.

Please see [4] for a discussion of the benefits of using the d∗ for Benford-specific appli-
cations and a more general discussion of the metric.

1.3.2 Visualising BL and FRBL

In order to analyse BL we need to apply it to a dataset. There are many examples of datasets
that are Benford, as we have seen in this paper, that we could choose from. However,
geometric series are known to be Benford and we can generate a geometric series in any
given range with an arbitrary number of terms[4]. We will therefore use these synthetically
generated geometric series as a basis for applying BL and FRBL to more general datasets.
This will also give an intuitive understanding of how BL compares with the FRBL.

Fig 1 shows the application of BL and FRBL to a geometric series in the range [1, 10000)
with a thousand elements. We observe conformity with a Benford distribution in both cases
– as expected for a geometric series. In particular, since the range of data perfectly spans
4 decades of data, the BL and FRBL converge to the same distribution of first digits, as
expected.

We are not limited to only considering sets with ranges perfectly spanning decades of
data – we can consider any range6. Fig 2 shows the FRBL applied to several ranges of data.

6. Indeed, we could also consider finite unions of such ranges as well. These should be finite as we actually
need to compute the probabilities
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Figure 1: Histograms plotting the BL (left) and FRBL (right) to the same geometric series
with a thousand terms in the range [1, 10000). The expected value of the occur-
rence, Ei, is calculated using the formulation of BL and FRBL in section 1.2, with
error bars given by the Poisson noise,

√
Ei. The actual observed occurrences, Oi,

are shown for each of the first digits {1, 2, ..., 9}, as a bar. The normalised resid-
uals are plotted under the graphs and show whether the observed data is within
one standard error (shown in green) or outside one standard error (shown as red).
In the case where we have 4 full decades in the range, the classical BL and FRBL
plots are identical. The d∗ metric, measuring the conformity with the underlying
Benford distribution, demonstrates excellent conformity with both BL and the
FRBL.

We can see that the distribution of first digits varies significantly from BL depending on the
range. For example, for the range [1, 5), we see the distribution only expects first digits in
the set {1, 2, 3, 4}, which is correct. This distribution is clearly different from the classical
BL, however, the general observation that the lower digits have a larger expectation still
holds in this case. Again, all values of d∗ suggest conformity with a Benford distribution.

However, these finite ranges of data do not necessarily conform with the classical BL,
even though the underlying distribution is Benford. This is precisely because of the as-
sumptions made when deriving the classical BL, that the tails of the distribution do not
contribute significantly. This is equivalent to the datasets spanning several orders of mag-
nitude.

Fig 3 illustrates the deviation from BL and the FRBL for geometric sets, as measured
by the d∗ metric. The x-axis represents the coefficient b, which determines the upper bound
of the data range [1, b× 103], while the y-axis shows the d∗ metric, a measure of conformity
to the respective laws. The blue data points correspond to BL, and the red data points to
FRBL.
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Figure 2: Comparison of observed first-digit counts with FRBL for four finite multiplicative
ranges: Series 1, [1, 5), only digits 1–4 occur; (b) Series 2, [2, 30), digits 1–9 appear
but 1 and 2 dominate; (c) Series 3, [5, 10), only digits 5–9 occur; (d) Series 4,
[1, 10000), the broad multi-decade range shows the familiar Benford-like decay
from 1 to 9. In all plots, the residuals are small, demonstrating close agreement
between the data and the FRBL.

The blue data points show the variation of the d∗ metric for Benford’s Law across the
range of b.
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Figure 3: The variation of the d∗ metric when the first digit test is applied to geometric
Benford sets spanning different dynamical ranges, [1, b × 103], as a function of
the coefficient b ∈ [1, 10]. BL is shown in blue and the FRBL is shown in red for
the first index over this finite range. Each plot has one thousand data points.
We measure good conformity with BL at the endpoints b = 1, 10 with weaker
conformity away from these values for both metrics. There are local maxima at
b = 2 for d∗. All elements of the base sets in the range [103, b×103] have one in the
first index when b < 2. This introduces a disproportionate number of ones into
the distribution of first digits, resulting in a poor fit with BL. When b > 2, other
digits appear in the first index (2, 3, 4, ..., 9), which improves conformity with
BL. For d∗ we observe a monotone increase between b = 1 and b = 2 followed
by a monotone decrease between b = 2 and b = 10. This shows that the d∗

metric is sensitive to the distribution’s underlying shape rather than deviations
in individual bins. Note, we observe excellent conformity with the FRBL.

• Endpoints Conformity: The figure shows that the d∗ metric is close to zero at the
endpoints b = 1 and b = 10. This indicates good conformity with BL for these specific
ranges, where the data sets are [1, 103] and [1, 104], respectively. This is expected, as
over these ranges we are analysing full decades of data.

• Monotonic Behaviour: We observe a distinct pattern in the d∗ metric for BL. There
is a sharp, nearly monotonic increase from b = 1 to a local maximum around b = 2,
followed by a general monotonic decrease from b = 2 to b = 10. This suggests that
the fit to BL is worse around b = 2 and improves as b moves away from this value
towards either endpoint.
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• Impact of First Digit Distribution: For b < 2, all numbers in the range [103, b× 103]
have a first digit of 1. This is because any number N in this range satisfies 1000 ≤ N <
2000, thus having a first digit of 1. This disproportionately large number of 1s skews
the first-digit distribution, leading to a poor fit with BL’s logarithmic distribution.
As b increases beyond 2, other digits (2, 3, 4, etc.) begin to appear in the first
position, which normalises the distribution and improves the fit with BL, leading to
the observed decrease in d∗. The non-smooth, step-like nature of the decay for b > 2
is likely due to the successive appearance of new leading digits as the range expands.

The d∗ metric for FRBL remains consistently near zero, providing strong empirical evidence
that FRBL is the correct and more accurate model for predicting the first-digit distributions
of Benford sets.

We now have a general framework for applying BL to constrained datasets. This will be
invaluable when applying this technique to time series, which may not necessarily span a
large range or may not span more than a single decade. In particular, we will begin by
analysing time series of synthetically generated stock prices. We will provide the mathe-
matical framework for doing so and show that time series generated under this framework
are Benford in the finite range case. We will introduce methods for analysing conformity
with BL and whether this may yield any useful results for quantitative analysis of price
movements.
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2 Geometric Brownian Motion and BL

Geometric Brownian motion (GBM) is the stochastic process most commonly used in the
classical Black–Scholes framework to model the evolution of a non-dividend-paying stock
price St. The GBM model assumes continuous paths, proportional (multiplicative) noise,
constant drift and constant volatility. The model was central to the Black–Scholes option
pricing theory and related developments in continuous-time finance [5; 6].

GBM offers a relatively simplistic model of stock price movements that we will use as a
basis for an initial Benford analysis of stock price time series.

2.1 Geometric Brownian Motion

Theorem 11 (Time-Homogeneous Geometric Brownian motion) A (time-homogeneous)
geometric Brownian motion {St : t ≥ 0} with drift µ ∈ R and volatility σ > 0 is given d as
the (strong) solution of the stochastic differential equation

dSt = µSt dt+ σSt dWt, S0 > 0, (7)

with the solution

St = S0 exp
((

µ− 1
2σ

2
)
t+ σWt

)
. (8)

Probability space and filtration. We work on a filtered probability space

(Ω,F , (Ft)t≥0,P)

where the filtration (Ft)t≥0 satisfies the usual conditions (right-continuous and complete).
The filtration models the flow of information available through time; requiring St to be
adapted to (Ft) means the value of St at time t is determined by information available up
to time t.

Standard Brownian motion. The process (Wt)t≥0 is a standard Brownian motion (also
called a Wiener process) relative to (Ft) and P. Concretely:

• W0 = 0 almost surely,

• Wt has continuous paths,

• increments are independent and Gaussian: for 0 ≤ s < t, Wt −Ws ∼ N(0, t− s) and
is independent of Fs.

The increment dWt in the differential form is an informal notation for the infinitesimal in-
crement of this continuous martingale and must be understood in the sense of Itô integration
(see below). Standard references cover these facts in detail [7; 8].

Integral form and Itô interpretation. The differential (7) is shorthand for the integral
equation

St = S0 +

∫ t

0
µSs ds +

∫ t

0
σSs dWs, (9)
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where the first integral is a classical (Lebesgue) integral and the second is an Itô stochastic
integral. The Itô integral ∫ t

0
σSs dWs

is defined for adapted processes satisfying suitable integrability conditions and has the
crucial isometry property

E
[(∫ t

0
σSs dWs

)2
]
= E

[∫ t

0
σ2S2

s ds

]
.

Thus statements about existence, uniqueness and moments are proved in the framework of
Itô calculus [7; 8].

Meaning of the terms. Writing the SDE in relative form

dSt

St
= µdt+ σ dWt, (10)

makes the economic interpretation transparent:

• µ is the instantaneous (expected) rate of return per unit time (units: 1/time). Over
a short time ∆t, the deterministic contribution to the expected proportional change
is approximately µ∆t.

• σ > 0 is the instantaneous volatility (units: 1/
√
time); over a short time interval of

length ∆t the random component has standard deviation approximately σ
√
∆t. The

product σ dWt therefore models random fluctuations in the proportional change of St.

• S0 > 0 is the (non-random or F0–measurable) initial price.

Because both drift and diffusion coefficients are proportional to St, the noise is multiplica-
tive: the magnitude of absolute fluctuations scales with the level of the process. This
contrasts with additive noise models where fluctuations are independent of the level.

Proof To solve (7) apply Itô’s lemma [9] to Xt = lnSt. If St > 0 and f(s) = ln s, then

df(St) =
1

St
dSt −

1

2

1

S2
t

(dSt)
2.

Using (7) and the Itô calculus rule (dWt)
2 = dt, we obtain

d(lnSt) =

(
µ− σ2

2

)
dt+ σ dWt.

Integrating from 0 to t gives

lnSt = lnS0 +

(
µ− σ2

2

)
t+ σWt.

Exponentiating yields the explicit solution

St = S0 exp
((

µ− 1
2σ

2
)
t+ σWt

)
. (11)

Thus St is log-normally distributed for each fixed t > 0.
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Remark 12 (Positivity construction) One important modelling requirement for stock
prices is non-negativity. For GBM the positivity is immediate from the explicit solution:

St = S0 exp
((

µ− 1
2σ

2
)
t+ σWt

)
. (12)

Since the exponential is strictly positive, St > 0 almost surely whenever S0 > 0. Equiv-
alently, S is the stochastic (Doléans–Dade) exponential of the continuous semimartingale
(µ− 1

2σ
2)t+ σWt; this perspective explains positivity more abstractly (see [7]).

Remark 13 (Path properties and Markov property) The sample paths of St are con-
tinuous (as a continuous function of Wt) but almost surely nowhere differentiable — a con-
sequence of the roughness of Brownian motion. The process (St) is Markovian: its future
evolution depends only on the current value St (and time), not the past history. Further-
more, the process of log-prices logSt has independent Gaussian increments, which implies
that logSt is an arithmetic Brownian motion and that St is log-normal at fixed times.

Remark 14 (Why the assumptions are required / modelling remarks) The assump-
tions of the model yield some useful properties:

• The condition σ > 0 ensures genuine randomness in returns; if σ = 0 the model
reduces to deterministic exponential growth St = S0e

µt.

• The multiplicative form σSt dWt is chosen in finance because it yields stationary (time-
homogeneous) distributional properties for log-returns and ensures positivity, both de-
sirable for modelling asset prices.

GBM’s main simplifying assumptions are constant volatility and continuous paths. Empiri-
cally, asset returns show volatility clustering, leverage effects, and jumps. For these reasons,
models with stochastic volatility or jump-diffusions are commonly used as extensions [10].

Additionally, given that solution St is log-normally distributed and the noise added to
the price path is multiplicative, this suggests that GBM may be Benford. We will analyse
this proposition in the next section.

2.2 Is GBM Benford?

The question of whether GBM obeys Benford’s Law has been addressed in the literature
from both rigorous and heuristic perspectives.

The key mechanism used in proofs is the equidistribution modulo one of the logarithm:
if logB St mod 1 becomes (or is) uniformly distributed, then the leading digits of St follow
Benford’s law. For GBM one observes that logSt is Gaussian with variance growing lin-
early in t. Such a distribution whose logarithms spread out (variance → ∞) and satisfy
mild regularity conditions produces Benford behaviour. This viewpoint is used explicitly
in Kontorovich and Miller’s structural approach (see their discussion of “spreading Gaus-
sians” and how Poisson summation is applied to limiting densities) and is described in more
expository form in Miller’s and Berger–Hill’s work [11; 12; 13; 14].

To be precise about the sense in which GBM is Benford, authors differ in formulation,
and those distinctions matter for applications:
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• Ensemble / distributional sense. Fix t (or let t vary over a diverging sequence);
consider the law of St (or the law of Stn as tn → ∞). Because logSt is Gaussian with
variance σ2t, as t → ∞ the density of logSt “spreads out” and under the hypotheses
used in Kontorovich–Miller this yields Benford behaviour for the distributions in the
large-time limit (see [11; 12]).

• Time-series / trajectory sense. One may sample a single realisation (St)t≥0 at
times t1 < t2 < · · · and ask whether the empirical distribution of leading digits of the
sampled sequence approaches the Benford proportions. Results here typically rely on
ergodicity/mixing or on ensemble-to-time transfer arguments; the survey and primer
by Berger and Hill summarise conditions under which continuous-time stochastic pro-
cesses (including GBM as a primary example) produce Benford digit distributions
along time or along typical trajectories [13; 14].

• Practical / finite-sample caveats. Even though mathematical limits (e.g. t → ∞)
indicate Benford behaviour, finite-time samples, strong deterministic trends, choice
of sampling scheme, discretisation, and economic constraints can produce pronounced
deviations. For example, empirical studies of real financial time series (e.g. S&P500)
report mixed or negative conformity to Benford’s law for raw price series, while log-
returns sometimes conform more closely, demonstrating that model assumptions and
sampling matter in practice [15].

If BL were to be used in quantitative analysis of time series, for example, as a signal
to identify anomalies, we would need to be able to apply a finite range analysis. Locally
at least, the time series element will be constrained to a finite range; the FRBL offers a
promising candidate for local time series analysis.

Theorem 15 (Finite Range Benford Convergence for GBM) Let Xt be geometric
Brownian motion:

Xt = X0 exp
(
(µ− 1

2σ
2)t+ σWt

)
,

with σ > 0. Put

Yt = log10Xt = log10X0 + αt+ βWt, α =
µ− 1

2σ
2

ln 10
, β =

σ

ln 10
.

Fix any interval I = [a, b) ⊂ [1, 10). Then

lim
t→∞

Pr
(
M10(Xt) ∈ [a, b)

)
= log10

b

a
,

or rather the time series is Benford when t → ∞.

Proof For each integer k define

φt(k) := E
[
e2πikYt

]
.

Using E[eiuWt ] = exp(−u2t/2) we obtain, for k ̸= 0,

φt(k) = e2πik(log10 X0+αt) exp
(
− 1

2(2πkβ)
2t
)
.
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Since β > 0, the Gaussian damping factor tends to zero as t → ∞, hence

lim
t→∞

φt(k) = 0 (k ̸= 0), φt(0) ≡ 1.

Let µt be the distribution of the fractional part {Yt} on R/Z. The numbers φt(k) are the
Fourier coefficients of µt, and their pointwise limit (1 at k = 0, 0 elsewhere) are the Fourier
coefficients of Lebesgue measure on the circle. By uniqueness of measures determined by
Fourier coefficients,

µt
w−→ Uniform[0, 1).

Now let I = [a, b) ⊂ [1, 10) be fixed and put

J = {log10 s : s ∈ I} = [log10 a, log10 b) ⊂ [0, 1).

Then Pr(M10(Xt) ∈ I) = µt(J). Since J is an interval its boundary has at most two points;
the Uniform[0, 1) limit measure assigns those points zero mass.

Theorem 16 (Portmanteau theorem, special case) If a sequence of probability dis-
tributions µt converges weakly to a probability distribution µ, then for any set A whose
boundary has µ-measure zero, one has

lim
t→∞

µt(A) = µ(A).

The Portmanteau theorem therefore gives

lim
t→∞

µt(J) = Leb(J) = log10
b

a
.

Discussion

• The finite-range (first digit) version is just asking: pick a fixed interval I ⊂ [1, 10), e.g.
“first digit = 7” means I = [7, 8). We show that the chance Xt falls in that interval
converges to what Benford’s law predicts.

• In showing the Fourier coefficients vanish, we rely on the Gaussian decay e−ct. If the
process had slower mixing or less randomness, one might not get such nice exponential
damping, and then convergence could be slower or might fail.

• The same argument covers any finite union of fixed subintervals of [1, 10). Edge
cases involving an endpoint equal to 10 should be interpreted with the usual mantissa
convention (values lie in [1, 10)), and do not change the conclusion because single
points carry zero mass under the Uniform[0, 1) limit.

We have shown that GBM follows the Benford distribution when t tends to infinity.
Such a formalism may not be sufficient to analyse price paths over shorter periods. To do
so, we’ll need to quantify the expected error in our observations at smaller values of t.
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2.2.1 Quantifying the Error with FRBL

We quantify the rate at which geometric Brownian motion (GBM) attains finite-range
Benford behaviour as time t → ∞. Starting from the Fourier representation of the law
of the fractional part of the logarithm, we prove an exact Fourier-series expression for
the Benford error and derive an exponentially small (Gaussian-in-t) bound with explicit
constants.

Setup Let Xt be geometric Brownian motion (GBM)

Xt = X0 exp
(
(µ− 1

2σ
2)t+ σWt

)
, σ > 0,

where (Wt)t≥0 is a standard Wiener process. Put

Yt := log10Xt = log10X0 + αt+ βWt, α =
µ− 1

2σ
2

ln 10
, β =

σ

ln 10
.

Fix an interval I = [a, b) ⊂ [1, 10) and let

J := {log10 s : s ∈ I} = [a′, b′) = [log10 a, log10 b) ⊂ [0, 1).

Denote by µt the distribution of the fractional part {Yt} on the unit circle R/Z. The
quantity of primary interest is the Benford error

Et(I) := Pr
(
M10(Xt) ∈ I

)
− log10

b

a
= µt(J)− |J |, |J | := Leb(J) = log10

b

a
.

We want to analyse the error term Et(I) for different values of t ∈ [1,∞). This will
give us a more general understanding of the condition GBM should meet to be considered
Benford.

Fourier Representation For each integer k ∈ Z define the characteristic (Fourier) coef-
ficient

φt(k) := E
[
e2πikYt

]
.

Using the Gaussian characteristic function E[eiuWt ] = exp(−1
2u

2t) one obtains, for k ∈ Z,

φt(k) = e2πik(log10 X0+αt) exp
(
− 1

2(2πkβ)
2t
)
= e2πik(log10 X0+αt)e−2π2k2β2t.

In particular φt(0) ≡ 1 and for k ̸= 0 we have φt(k) → 0 as t → ∞.

The indicator 1J of the interval J ⊂ [0, 1) has Fourier coefficients

1̂J(k) =

∫ 1

0
1J(x)e

−2πikx dx = e−2πik a′+b′
2

sin(πk|J |)
πk

, k ∈ Z, k ̸= 0,

and 1̂J(0) = |J |.
Since φt(k) are the Fourier coefficients of µt, Parseval/Plancherel-type inversion for

measures against L1 test functions (or Fourier series representation on the circle) yields the
following exact identity.
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Proposition 17 (Exact Fourier representation of the Benford error) For every t >
0 and every interval I = [a, b) ⊂ [1, 10),

Et(I) =
∑

k∈Z\{0}

φt(k) 1̂J(−k) =
∑
k ̸=0

e2πik(log10 X0+αt)e−2π2k2β2t e2πik
a′+b′

2
sin(πk|J |)

πk
.

(13)
In particular the following (uniform) bound holds:

|Et(I)| ≤
∑
k ̸=0

e−2π2k2β2t · | sin(πk|J |)|
π|k|

.

Proof The identity is a direct application of Fourier inversion on the torus: for any
integrable function f on [0, 1) and any probability measure µ on the circle with Fourier
coefficients µ̂(k) one has

∫
f dµ =

∑
k∈Z f̂(−k)µ̂(k) whenever the Fourier series converges

in the appropriate sense. Here f = 1J and µ̂t(k) = φt(k). The absolute bound follows by
taking absolute values and using the explicit form of 1̂J(k).

From the exact representation (13) we derive two useful explicit bounds.

Exponential (Gaussian-in-t) decay Set c := 2π2β2 > 0 (so c = 2π2σ2/(ln 10)2). Using
| sin(πk|J |)| ≤ 1 and pairing k with −k we have

|Et(I)| ≤
2

π

∞∑
k=1

e−ck2t

k
.

Split the sum into the k = 1 term and the tail:

∞∑
k=1

e−ck2t

k
= e−ct +

∞∑
k=2

e−ck2t

k
≤ e−ct +

∫ ∞

1

e−cx2t

x
dx.

Substitute u =
√
ct x to obtain∫ ∞

1

e−cx2t

x
dx =

∫ ∞

√
ct

e−u2

u
du ≤ 1

2ct
e−ct,

where we used the standard Gaussian tail inequality
∫∞
y e−u2

du ≤ 1
2ye

−y2 and then inte-
grated by parts. Combining the estimates yields the explicit bound

|Et(I)| ≤
2

π
e−ct

(
1 +

1

2ct

)
=

2

π
e−2π2β2t

(
1 +

1

4π2β2t

)
.

Written in terms of the original volatility σ,

|Et(I)| ≤
2

π
exp

(
− 2π2σ2

(ln 10)2
t
)(

1 +
(ln 10)2

4π2σ2t

)
. (14)

Remark 18 This bound shows exponential decay of the Benford error as t → ∞, with exact
exponential rate 2π2β2. The prefactor 2/π and the 1/t correction are explicit and small for
moderate/large t. Indeed as t → ∞ the exp(−t) terms tend to zero and the distribution
converges to BL.
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2.2.2 Visualising the Error with FRBL

We have an upper bound for the expected error for GBM at some value of t in the time
evolution. We can visualise how these error terms change as t increases via a Monte Carlo
simulation[16; 17].

Monte Carlo methods are techniques which use repeated random sampling to obtain
numerical results. They are generally used to model systems or phenomena that have a
significant degree of uncertainty in their inputs or are too complex to be solved analytically.
By aggregating the results of a set of simulations, the distribution of possible outcomes can
be analysed, giving a statistically significant account of the modelled phenomena.

GBM falls within this category as a model of time series that has Gaussian noise added by
construction. We can therefore simulate various GBM time series with different parameters
to understand how errors might propagate as t increases. This will also confirm whether
our analytic error bound given in (14) is correct. We compared the analytic error estimate
with Monte Carlo simulations of GBM.

Monte Carlo Simulations: We fixed X0 = 1, µ = 0.05, σ = 0.3, and considered the
interval I = [1, 2) with theoretical mass log10 2. At each time t we sampled directly from
the marginal distribution

Yt ∼ N
(
log10X0 + αt, β2t

)
, α =

µ−1
2σ

2

ln 10 , β = σ
ln 10 ,

and estimated the Benford error by

Êt(I) =
1

n

n∑
j=1

1{{Y (j)
t }∈J} − |J |.

We generated ten independent batches with n = 250,000 samples each7, and plotted the
empirical absolute errors |Êt(I)| against time, alongside the analytic Fourier–series value
and the Gaussian–in–t upper bound. For each t we computed the groupwise signed errors
and their mean.

Figure 4 shows the results of this simulation.
The dominant source of discrepancy between the analytic Benford error Et(I) and the

Monte–Carlo curves is sampling variability of the binomial estimator. Let pt = Pr(M10(Xt) ∈
I) be the true probability and write the Monte–Carlo estimator p̂t =

1
n

∑n
j=1 1{{Y (j)

t }∈J}.

Then

(p̂t) =
pt(1− pt)

n
, sd(p̂t) =

√
pt(1− pt)

n
.

For our interval I = [1, 2) one has pt ≈ |J | = log10 2 ≈ 0.30103, hence pt(1 − pt) ≈
0.30103 ·0.69897 ≈ 0.21. Requiring a target pointwise standard error b leads to the sample–
size rule

n ≳
pt(1− pt)

b2
≈ 0.21

b2
.

7. The standard error scales as n−1/2, so further reductions require quadratically more samples. Hence
n = 250,000 is a practical compromise between computational cost and the desired precision (it matches
the natural target b ≈ 10−3 set by the analytic decay in our time window). If one needs reliable pointwise
estimates below 10−4 one must increase n by another two orders of magnitude or use variance–reduction
/ pooled estimators.
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Figure 4: Comparison of analytic and Monte–Carlo estimates of the Benford error for GBM
with X0 = 1, µ = 0.05, σ = 0.3, and I = [1, 2). The top figure shows the abso-
lute error |Et(I)| on a semilog scale for ten independent batches (coloured), the
analytic Fourier–series value (black solid), and the Gaussian–in–t bound (black
dashed). The analytic error decays exponentially in t, while the empirical curves
saturate near the Monte–Carlo noise floor once the true error is ≪ n−1/2. The
bottom figure shows the signed error Et(I), showing the analytic Fourier pre-
diction (black) together with the empirical mean across the same ten batches of
n = 250,000 samples each (blue). These results highlight that (i) the true Benford
error decays exponentially fast with oscillatory corrections, and (ii) sufficiently
large sample sizes are required to resolve the analytic behaviour below the natural
Monte–Carlo variability.

In particular, to reduce the pointwise sampling noise to the level b = 10−3 (i.e. to make
the sampling sd comparable to analytic errors of order 10−3) one needs

n ≳
0.21

(10−3)2
≈ 2.1× 105.
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Figure 5: A near identical treatment as in Figure 4, except n = 2000. On the lower figure,
we have shown the 95% confidence range bands for the Monte-Carlo noise, shown
as a light blue shaded area, indicating that our error bound is within a reasonable
confidence window. The Monte–Carlo noise floor becomes significant at lower
values of t in this simulation, which is expected.

Thus n = 250,000 slightly exceeds this threshold and yields

sd(p̂t) ≈
√

0.21

250,000
≈ 9.2× 10−4,

so typical Monte–Carlo fluctuations are O(10−3). At a lower value of n this becomes clear.
Figure 5 shows a Monte–Carlo simulation for n = 2000, including the 95% Monte–Carlo
confidence intervals for the signed error. At this lower sampling rate, we still see agreement
between our analytical estimate and the observed error rate in the simulation, as evidenced
by the confidence intervals.

This explains two important observations:
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1. With n = 2,000 the sampling sd is ≈ 1.0 × 10−2, much larger than analytic errors
once t is moderate, hence the empirical |Êt| routinely lies above the analytic curve.

2. With n = 250,000 the sampling sd is reduced to ∼ 10−3, so the empirical mean (or
the pooled estimator using all samples) tracks the analytic signed error down to that
noise floor; the analytic curve then lies inside the Monte–Carlo confidence intervals.

Appendix A. Test Appendix

This is a test appendix
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